
Presentation Abstract

From the beginning of DB2, application performance has always been a key

concern. There will always be more developers than DBAs, and even as

hardware cost go down, people costs have risen to even higher levels. Indexes

are often added to fix problems, but many don’t help at all. The presentation

looks at techniques to judge which indexes are good and which are evil, and

techniques to improve application I/O.

1

Frame of Reference

I have worked with DB2 since 1985. I
was pushed into consulting in 1992, and I
started with Db2 for LUW in 1993.

Since 1997, tuning vendor applications,
first Peoplesoft, then Siebel and other industry
applications. Now I help customers with SAP,
Sabrix, Vertex, WS Commerce, Sterling

Commerce, etc. I am still tuning in-house
applications.

I have spoke at IDUG NA since 1989,
EMEA since 1995.

2

3

4

We always want data retrieval to be done by indexes. While there is some art,

meaning knowledge and experience, to designing the best indexes, there are

also tools such as the Design Advisor to assist in this process.

5

6

This list represents general guidelines for tuning indexes of an existing

application. Each point will be discussed in the following pages.

The difference in using a clustering index is actually how the table space pages

are processed. If there has been no disorganization of the table space, the data

in the table will be stored in the order of the index. For duplicate key values or

range predicates, these rows will be found adjacent to each other. The result is

that far fewer data pages are processed.

The Informix optimizer also takes into account the use of the clustering index.

For an index in non-clustering order, Informix assumes that each row will be

found on a different page. Rows retrieved via a clustered index will perform

substantially fewer table space I/Os. Informix will use the catalog statistics to

compute the number of pages to be retrieved based on the number of rows per

page.

This substantial saving dictates that the person doing the physical design

choose the clustering index carefully. Clustering indexes will help when

cardinality is low, or when range predicates such as BETWEEN, LIKE, or <

are used.

10

In this example, voucher processing was following the order of the

PSAPYMNT index, but the “_” index was the clustering index. Changing

cluster to the “A” index reduced the run time of this critical job from 4 hours

to 45 minutes.

The calculations are from a real customer situation, where the application was

fairly new. Calculating the Rows per Page, Rows Per Key and the Number of

Prefetches to read a table are good things to know when tuning.

This example uses an arbitrary prefetch quantity of 32 in the calculations.

Newer versions of DB2 LUW would likely use 64 or 128, and this would make

the case stronger for changing the clustering. The data grew substantially over

time, making this decision even more important.

This example can from a small internet stock application. For 300 stock

symbols, Some people felt that it was better to place the daily stock price first

in the index if 10 years of history were kept.

But, because dates are almost always specified as a range, more index scanning

was required to find the required symbol. Changing the order in the index

provided the needed performance gain.

14

In some respects, vendors do not support the advanced features of DB2 LUW.

Include columns, clustering and MDC are not exploited, and if you define the

indexes through vendor tools, these cannot be specified.

15

The design advisor continues to be one of the best ways to improve Db2

performance through the automated evaluation of indexing and design

alternatives. If it is used in single statement mode, you may have “created a

monster” as you might find that some people end up with one index per SQL

statement per table.

Scott’s presentation shows how to take the analysis a few steps further when

evaluating indexes for workloads.

16

The fact that DB2 allows for the definition of buffer pools leads one to think

that splitting DB2 objects into separate buffer pools would be a good thing to

do. This is a true statement, and we will discuss buffer pool allocation

strategies.

In DB2, there are 2 basic types of I/O: logical and physical. Physical I/O is the

traditional type that is viewed as bad: I/O requests are made to devices, disks

rotate, and eventually data is returned to the application. An I/O causes delays

waiting for it to complete and consumes CPU resources.

Logical I/Os are simply application requests for data. Through the use of areas

of memory, called buffer pools, DB2 can substantially reduce CPU, I/O, and

elapsed time. This is reflected by reduced resource consumption and improved

user productivity.

It is desirable for a logical I/O to not require a physical I/O. If the data resides

in the buffer pool(s), the request is much cheaper than waiting for physical I/O

to complete. Updates to data are made in the buffer pools, and these changes

are written back to disk when threshold values are reached or at system

checkpoint time. The buffer pools in central storage are also called the virtual

buffer pools.

The fact that DB2 allows for the definition of buffer pools leads one to think

that splitting DB2 objects into separate buffer pools would be a good thing to

do. This is a true statement, and we will discuss buffer pool allocation

strategies.

In DB2, there are 2 basic types of I/O: logical and physical. Physical I/O is the

traditional type that is viewed as bad: I/O requests are made to devices, disks

rotate, and eventually data is returned to the application. An I/O causes delays

waiting for it to complete and consumes CPU resources.

Logical I/Os are simply application requests for data. Through the use of areas

of memory, called buffer pools, DB2 can substantially reduce CPU, I/O, and

elapsed time. This is reflected by reduced resource consumption and improved

user productivity.

It is desirable for a logical I/O to not require a physical I/O. If the data resides

in the buffer pool(s), the request is much cheaper than waiting for physical I/O

to complete. Updates to data are made in the buffer pools, and these changes

are written back to disk when threshold values are reached or at system

checkpoint time. The buffer pools in central storage are also called the virtual

buffer pools.

Buffer pool tuning is a major method for tuning applications. It is generally

done in the production environment where the workload to be tuned resides.

This diagram shows where logical I/O and physical I/O are performed.

If there is insufficient real memory to back up the specifications for buffer

pools, OS paging will occur. This means that the entire system performance

will be negatively affected. If this has occurred due to DB2 buffer allocation,

the buffer pools should be reduced immediately. If you did this without telling

your system administrator, he will NOT like you very much!

Physical I/O includes many additional things such as rotational delay for the

disk drive and contention for the device and channels. A good access time for

a single page from disk is 6 milliseconds. A read satisfied from the buffer pool

is measured in microseconds, or at least 100 times faster.

There are two major types of I/O performed by DB2. The first type is random

I/O where a given data request uses an index to find the appropriate page and

retrieve the data required. Random I/O is efficient and is even better when no

physical I/O is needed due to the data being in the buffer pool.

The second type of I/O is sequential I/O. As its name implies, sequential I/O

requires that all or part of a table space or index be read sequentially to find

the data required by an application. This usually means a lot of I/O and

processing by DB2 to find the result requested. Sequential I/O can lower the

possibility of finding a page in the buffer for the next request. Prefetch I/O

takes longer than random I/O, but it reads many more pages per I/O.

Pure sequential prefetch means that the optimizer at bind time has chosen to

use prefetch. List prefetch is like skip sequential processing: a list of Row IDs

is built from one or more indexes and sorted before the data is retrieved in the

order it is stored on disk. Dynamic prefetch, also called smart prefetch or

sequential detection, is a run time decision by DB2 in response to a sequential

pattern in the data. If the pattern changes to a point where sequential prefetch

is not helping, it is turned off and possibly back on later.

There is no metric that shows the actual prefetch size if automatic is specified,

but it works quite well.

A unique index with an equal predicate uses the least amount of I/O for a

traditional query: one I/O per level of the index followed by the reading of a

single table row. Other very efficient ways to retrieve data include index only

access and even single fetch index access. If all data access could be so lovely!

But users and business requirements often ask more of the database. Often

many rows need to be returned, or scanned to find the answer set, and the

result is(much) more I/O.

21

In the very first days of Db2, the early version of the optimizer had the choice

of using an index or reading the entire table. As noted earlier, the introduction

of prefetch helped a lot. New methods of using prefetch where introduced to

further exploit the benefits of asynchronous I/O. Prefetch is all about reducing

the wait time to retrieve large amounts of data from disk.

To know that a lot of data is required is pretty much the entire downside of

prefetch. You will be doing a lot of processing.

22

To obtain the best tuning results, it is important to tune for the peak periods for

application use. Large buffer pool sizes combined with proper allocation of

objects to buffer pools can make dramatic improvements to application

performance.

The immediate benefits of buffer pool tuning are improved on-line response

times and batch run times realized by users of the DB2 system, improved user

productivity, greater system throughput, reduced CPU utilization, reduced I/O

workloads, and the optimization of DB2 memory resources.

23

DB2 externalizes old pages according to the changed pages threshold. IO

cleaners perform this operation asynchronously.

Pages that have been written back to disk can be stolen, but they can also be

read again if they have not been replaced by other activity.

24

The idea here is to use the available memory on the machine. Memory is very

cheap on x86 machines, and comparatively cheap to mainframes even on AIX

machines. Many machines have unallocated memory that could help to

improve DB2 performance.

25

The biggest negative impact comes from sequential read operations that

overlay pages within the buffer pool.

26

Random I/O is efficient and is even better when no physical I/O is required to

satisfy the request. A large buffer pool will allow high-use pages to remain in

the buffer pool.

Sequential I/O lowers the possibility of finding a page in the buffer for another

request. Even if a large buffer size is used, there is little chance of a page still

being resident. Separating sequentially accessed objects into a buffer pool

away from randomly accessed objects will improve the performance of the

random objects.

Sequential objects should not be expected to perform well regardless of the

buffer pool size. A pool of 1,000 to 3,000 buffers should be adequate

depending on the number of objects and how heavy the workload is. A larger

number may be required.

28

One of the biggest, yet not often spoken about, enhancements in DB2 V8 are

block-based buffer pools. The block-based area within a BP allows sequential

operations to be separated from random I/O. Just specify a block-based area,

and this will happen automatically.

The Blocksize should be equal to the Extent size for the table spaces using

your buffer pool.

30

RAMOS – random access mostly

SAMOS – sequential access mostly

The need to separate objects based on their I/O characteristics is a moot point

if a block based area is used.

31

These three calculations show the efficiency of the block-based area and its

ability to handle the amount of sequential activity. The efficiency of the area

appears good, and the number of pages per block I/O is approaching 32, which

is the blocksize and the prefetch quantity.

Ideally, 100% of the pages come from the block-based area. Having 97.6% of

the pages happen there seems quite good.

A block based area is like cheap insurance to ensure more randomly accessed

pages remain in the buffer pool. If the block based area is not large enough to

hold all aynchronous activity, it spills into the the page area as vector I/O.

Of course, high sequential activity could point to the need for indexes to

support certain queries.

33

I look upon ITCs as a good extension of MDC technology. The main concept

is to group data into extents that can easily be retrieved via prefetch.

34

Conceptually, MDC indexes are made up of dimensions, slices, and cells.

These are translated into blocks and extents when they are physically stored.

One of the most exciting features in DB2 for LUW v8 was the introduction of

multi-dimensional clustering (MDC). MDC indexes were designed to provide

the benefits of clustering across each column within a multi-column

index.They are introduced as a feature to help data warehouse applications, but

they will also help OLTP applications as well.

Several new concepts and terminology are introduced to describe MDC

indexes. These are mentioned here and on the pages following.

36

Early recommendations point to lower cardinality choices for dimensions, with

a large number of rows in each cell. Generated columns will help; for example,

use month and year as a dimension rather than days. A timestamp would be a

bad choice as each value would be in a different cell.

MDC indexes can also be built using a single dimension. This could be a good

alternative to traditional clustering indexes, particularly when wanting to avoid

reorgs.

With DB2 being able to read a large number of rows efficiently, this raises the

question shown. How good must your non-clustering index be to provide a

better access path choice for DB2?

This calculation shows how prefetch really helps I/O, and how non-clustered

indexes must have a decent cardinality. In this example, you want to avoid

having to read every extent, which is to say, your prefetch quantity. Otherwise,

Db2 may calculate that it is cheaper to avoid index I/O and simply use prefetch

on the table.

First and foremost, good indexes that match the requirements of your SQL

should be your objective. If your indexes are poor, Db2 will not use them.

We should not only optimize indexes, but also optimize buffer pools to have

optimum prefetch.

39

Speaker Biography

Martin Hubel is an independent consultant and has worked extensively with

DB2 since 1985. Martin develops and teaches DB2 advanced courses and is

recognized as a leading authority in the field. He has been using Db2 on

Linux, Unix, and Windows since 1993 and has participated in several beta test

programs for these platforms. He is an IBM Gold Consultant, IBM Champion,

and a member of the IDUG Volunteer Hall of Fame. He is also a member of

the Db2 LUW SAP Technical Leadership Exchange.

If you are reading this while in Malta or afterwards, Malta was Martin’s 32nd

country doing Db2 consulting, training, or speaking.

40

